

IPv6 Address Management – The First Five Years

Enno Rey, erey@ernw.de @enno_insinuator

#whoami

- Some background in large scale networking, doing security as a full-time profession since '97.
- o Founded (in 2001) a company specialized in highly technical security assessments and consulting
 - o www.ernw.de
- o Blogging about IPv6 & other pieces at https://insinuator.net/tag/ipv6/
- Responsible for administrative tasks in a number of LIRs, incl. ORG-HACK1-RIPE;-)

Agenda

- Approaches to get addresses for an organization (Review)
- o Approaches to distribute addresses within an organization
- o Approaches how to actually manage addresses

Very Quick Stats (1)

Very Quick Stats (2)

Source:

http://w3techs.com/technologies/breakdo wn/ce-ipv6/ranking

Very Quick Stats (3)

CC	Country	IPv6 Capable
BE	Belgium, Western Europe, Europe	59.09%
IN	India, Southern Asia, Asia	58.32%
UY	Uruguay, South America, Americas	44.28%
US	United States of America, Northern America, Americas	43.74%
DE	Germany, Western Europe, Europe	41.85%
GR	Greece, Southern Europe, Europe	38.98%
LU	Luxembourg, Western Europe, Europe	30.60%
CH	Switzerland, Western Europe, Europe	30.46%
JP	Japan, Eastern Asia, Asia	27.83%
GB	United Kingdom of Great Britain and Northern Ireland, Northern Europe, Europe	25.88%

Source:

http://stats.labs.apnic.net/ipv6/

Very Quick Stats (4)

Very Quick Recap: Ways of Getting IPv6 Addresses for \$ORG

- Act as Local Internet Registry (LIR) / Become member of RIR (e.g. RIPE)
- Apply for provider independent (PI) address space/assignment, thru sponsoring LIR
- Get (provider dependent) assignment out of ISP's (provider aggregatable) allocation
- Other (e.g. via tunnel broker)

Reasons to Act as LIR / Become RIPE Member

3	REQUIREMENTS	5
3.1	References	5
4	[TECHNICAL] OVERVIEW OF APPROACHES AND ASSOCIATED RIPE POLICIES	6
4.1	Overview as of RIPE NCC Policies	6
6.2	Allocations / "PA Space"	7:
63	Assignments / "Pf Space"	70
4.4	Routability of IPvé Prefixes	8
4.5	Strict (IPv6) Prufix Filtering	9
6,6	General Aspects of Geolocation	10
4.7	Geolocation for IPv4 Networks	10
4.9 4.9.1	Advantages / Disadvantages of the Approaches Become LIR and Receive Atlocation	12 12
4.9.2	Go with [Potentially Multiple] PI Space Assignments	12
5	CONCLUSIONS AND RECOMMENDATION FOR \$COMPANY	13
5.1	Recommendation	13
5,2	What to Keep in Mind / Caveats	13
5.3	Necessary Steps / Checklist	13
5.4	Expenses & Efforts	13

See also:

https://insinuator.net/2017/10/position-paper-on-an-enterprise-organizations-ipv6-address-strategy/

http://www.ipv6conference.ch/wp-content/uploads/2015/06/B09-Rey_IPv6_Business_Conference_Address_S pace_Approaches.pdf

Enterprise LIR / Things to Keep an Eye On

Strict Filtering

- Haven't seen issues in a while (provided proper route6 objects were created).
- See also:
 - https://www.troopers.de/media/filer_public/8a/6c/8a6c1e42 -f486-46d7-8161-9cfef4101ecc/tr15_ipv6secsummit_langner_rey_schaetzle_s lash48_considered_harmful_update.pdf

Out-of-region announcements

- Some of our customers do this ("RIPE space" getting announced in Americas, APAC, LATAM)
 - So far we've not observed issues.
- On the other hand some organizations have opted to explicitly choose another path, namely for reasons in the space of geolocation.

How to Distribute Address Space Within \$ORG

Address Management

- "Address Management" can serve different functions & objectives
 - Prescriptive
 (Try to) control how addresses are granted (and assigned to individual systems), usually on the basis of rules.
 - Requires governance ;-)
 - Descriptive
 Document/perform inventory of the current use of addresses

See also:

https://insinuator.net/2016/02/ipv6-address-planning-in-2016-observations/

IPv6 Address Plan / Objectives

Goal	Weighting (Sample)
Persistence	High
Applicability	High
Scalability	High
Support for routing based security	Medium
Ability to aggregate	Medium
Ability to delegate	Medium
Legibility	Low

See also: https://insinuator.net/ 2015/12/developingan-enterprise-ipv6security-strategy-part-2-network-isolation-onthe-routing-layer/

Observations

- For many years many organizations & people have tried to come up with well-structured (and -meant ;-) plans, centered around sites & services, see for example
 - https://labs.ripe.net/Members/steffann/preparing-an-ipv6addressing-plan
 - http://shop.oreilly.com/product/0636920033622.do
 - http://blog.ipspace.net/2015/04/how-do-i-start-my-ipv6-addressing-plan.html
 - https://insinuator.net/2014/05/ipv6-address-planconsiderations-part-3-the-plan/
- From what we see this just doesn't work in practice...
 - VUCA type of organizations
 - "Agile"/MVP-driven projects
 - Slow start of IPv6 + disperse efforts here+there

This is Why...

- We usually recommend a bit different approach
 - Not too prescriptive
 - Flexible
 - Allows for "delegation to projects"...

 We already see some organizations working on this basis. It's laid out on the following slides.

Address Plan

General Approach

 Overall prescriptive approach, but given many uncertainties only loose prescriptions will be made.

- Starting point is the first /32
 - o From allocation 2001:db8::/29.
 - All other (seven) /32s will be used as a reserve, for the moment.
- Overall three hierarchy levels planned
 - Allows for high degree of future flexibility.

Address Concept

Hierarchy levels

- "Segment ID" (/44)
- o "Sub ID" (/48)
- "Network ID" (/64)

Segment ID

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

V V V V V V V V V V V V V V V V Opt. Sub ID

- Generic high level identifier for various types of segments/networks
 - 4096 possible entities (or 256 when grouped)
 - Examples: "Corp Site Berlin", "Ireland Subsidiary", "Cloud XY"
- Represented by first three letters in third quartet of address.

Segment ID

Number Range & Representation

 \circ 2001:db8:XXXY, where XXX = ID

2001:db8:2000::/44

2001:db8:2980::/44

2001:db8:4480::/44

2001:db8:8800::/44

2001:db8:aa80::/44

2001:db8:f100::/44

Segment ID

Mode of allocation

- Within first /32, and following initial grouping, Segment IDs will be allocated in a sequential manner.
- Segment IDs are administered in group of eight IDs so that a requesting party can get several consecutive Segment IDs, even with temporal delay.
 - o Grouping allows for delegation of address management to specific organizational entities or 3rd parties.
- Still, consistent address management, with proper roles
 & tools will be crucial!
 - See discussion below.

Sub ID (Optional)

- 0 /48
 - o Four bits only, max. 16 entities
- 4th letter of third quartet
 - o 2001:db8:XXXY::/48
- Allows for additional "tagging" of segments for handling
 - o In firewall rules
 - For QoS purposes/marking (ideally with "wildcard rules")
 - Routing based security
- Use with caution!
 - All parties involved have to understand implications, namely on operations.

Sub ID

Potential Approach

- o "0": default ID
- o [...]
- o "D": data center networks (?)
- o "E": "Priority Queue"
- o "F": "Internal" / "Secure"
 - → Special treatment on border gateways, firewalls etc.

Network ID / "Net ID"

o /64 (default IPv6 prefix length/size for subnets)

- To be used for individual VLANs, in a flexible manner. This means
 - No additional encoding of information (prescribed).
 - Can be assigned in a sequential manner within segment (ID).

Network ID

- \circ Full fourth quartet (\rightarrow max 4096 entities)
 - o 2001:db8:XXXY:NNNN::/64 e.g.
 - o 2001:db8:1230:1234::/64
 - o 2001:db8:1230:90ab::/64
 - o 2001:db8:1230:aaaa::/64
 - o 2001:db8:1230:cafe::/64
- Note: Network ID "0000"/"0" not to be used (to avoid lack of clarity in context of RFC 5952)

Processes

IP Addresses

- Constitute the identity of an entity which communicates in an IP-based network, like the Internet;-)
- Identity can be used for
 - Communication
 - Ex-post identification of an entity which performed a communication act (log/incident analysis et al.)

The Memento Mori of IP Networking

Dance of Death (15th century fresco)

Note: o There is a strong operations perspective in the above statement.

Reasons (Triggers) to Renumber

- Assigned addresses are not unique within \$ENVIRONMENT
 - There's a clutch for this. It's called NAT.
 - o It either sucks (IPv4) or it is not available (IPv6)
 - Any clear idea what \$ENVIRONMENT looks like in, say, five years? See...
- Assigned addresses might turn out to be "unfit for purpose" at some later point
 - $_{\circ}$ This is a clear risk in the age of agile and MVP driven projects.
 - See also:
 - https://insinuator.net/2017/11/why-it-might-makesense-to-use-ipv6-in-enterprise-infrastructure-projects/

General Differences Between "Private"/RFC 1918 (IPv4) Address Space & Public/Global Addresses

- o RFC 1918 don't have an "owner"
 - IPv6 GUAs do.
 - With power comes responsibility.
 - Handling of abuse.

- o RFC 1918 can't (shouldn't) be routed outside own AS.
- o GUAs can (be routed)...
 - → route leaks, becoming transit etc.

Challenges Induced by IPv6 (as LIR)

- In most cases only global IPv6 addresses (GUAs) will be used within \$ORG
 - Those are kind-of "public resources".
 This means handling them needs some extra scrutiny (in comparison with IPv4)
 - o Route leaks, address abuse etc.
- Annual payment of RIPE fees needs to happen
 - o Else resources (incl. IPv4 [PI] addresses) can be lost

Processes in Context of RIPE Membership / LIR

- Point of contact to RIPE NCC
- Payment (recurring per year)
- Database maintenance
 - o Creation of objects
 (primarily inetnum6/route6/domain objects)
- Attend RIPE meetings ;-)

Changes (II)

- Assigning addresses to a site with a local Internet breakout might mean it has to be "routed independently"
 - Creation of proper route6 objects required then.
 - Assignment itself to be accompanied by creation of inet6num object.
- All these require proper roles & responsibilities
 - And ability to access RIPE web interface when needed.
 - → Accounts & passwords!

Current Process & Procedures as for (IPv6) Address Mgmt within \$ORG

o this slide intentionally left blank

Processes / High-Level View

- LIR administration
- Ownership/maintenance/review of address concept
- Assignment of address ranges to \$REQUESTORs
- Maintenance of "address [management] repository"
 - Usually an IPAM plays a role here...
- To be discussed: Where (within org)/who (sh|c)ould be owner of these processes?

Process / Overview

Processes / Details

- Requestor requests (IPv6) address block
 - Authentication / Authorization needed? [no]
 - Check will later be performed by address_admin
 - Web-Interface, Ticket, e-mail?[Ticket]
 - o [Ticket], ideally w/ mandatory fields
 - Has to go through "project guidance/checklist" first.
 - Guidance tb made available in advance via address admin (incl. governance/review/et al.)
 - Requestor has to confirm "have read & understood";-)
 - Guidance / checklist will be created by address_admin

Who is/can be \$REQUESTOR?

- Can by anything/anybody
 - Project
 - Not project-related
 - o "from the business line"
 - o Originating from 3rd party
 - o 3rd party performing operations

Processes

- Consulting if \$REQUESTOR has questions
- Allocation of addresses (usually "Segment ID" level) to an administrative entity
 - o In case of not publicly routable → fully automated
- Provisioning of parameters incl. IP addresses to individual systems.
 - o Change of parameters etc.
 - \rightarrow to be performed by \$0Ps of \$REQUESTOR

Sub-Processes "Address Administration" (1)

- After request comes in
 - Plausibility check
 - → if needed, consulting (to \$REQUESTOR)?
 - Approve [expected default] or deny
 - This decision has tb enforced by proper workflow.

Processes / Allocation of Addresses

- Address_Admin
 - Hands out 1st Segment_ID of group/container
 - In manual process (four-eyes principle)
 - Q: can/should this be automated?
 - Log/document allocation
 - o How? Reference to ticket_no?

Approval Process

- o Degree of automation depends on properties?
 - E.g. "Publicly routable" attribute?
 - Yes, *this* attribute.
 - Other fields/properties leading to involvement of human (address admin)?
- Otherwise can happen in highly automated manner
 - This requires tickets with mandatory fields.

IPAM / Prerequisites

- Segment_IDs prepopulated
 - Q: how is this done?
 - In groups of eight (8) segment IDs
 - "Containers" as of \$SOME_IPAM?
 - Dedicated property "[Seg] In global routing"
 - o If set → create route6 object in RIPE DB
 - \$SOME_IPAM supports this via API

Fields of Ticket – Proposal

Workflow Open Items

- o How to encourage / enforce documentation of prefix use?
 - First approach was to potentially tie it to a state gate within \$PROJECT_FRAMEWORK
 - Not feasible → different approach needed
- o Format of documentation?
 - o How has \$REQUESTOR documented the use?
 - Must be predefined for machine processing

Technical feasibility of proposal to be discussed with \$TICKET_SYSTEM_OPS

Process / Overview

Conclusions

- IPv6 is different from IPv4Especially in reality ;-)

- Don't expect too much from an IPv6 address planning effort
 - Be liberal!
- o Memento mori: renumbering hurts & costs!

- Take care of proper processes.
 - o The earlier the better.

Thank You for Your Attention!

erey@ernw.de, cwerny@ernw.de

@Enno_Insinuator @bcp38_

www.ernw.de

www.insinuator.net

Image Sources

o Icons made by <u>Freepik</u> from <u>www.flaticon.com</u> is licensed by <u>CC 3.0 BY</u>

