
Beyond embedded:
what could go wrong?

Sergey Bratus

PKI/Trust Lab, Dartmouth College

The Past:
Innocuous but Insidious

Embedded systems as innocuous-looking
bots/relays behind the perimeter

“DC phone home”, BlackHat Vegas, 2002

The Undetectable Packet Sniffer (UPS),
Defcon 11, 2004

iPAQ , Linksys boxes, ...

DreamCast...

...phone home

The Past:
Remotely Rootable

Custom networked operating systems are
just as vulnerable

Switches, routers, printers

“Attacking Networked Embedded
Systems”, FX & FtR, Defcon X

Mike Lynn’s “CiscoGate”, IOS shellcode

The Past: Naked in Public
Sensitive functionality misconfigured in
public due to lack of knowledge or neglect

ERNW: “Digging into SNMP in 2007:
 An exercise in breaking networks”
HitB 2007 Dubai

CISCO-TAP2-MIB wiretapping/traffic
interception exposed on Cisco uBR
10000 by a large ISP

The Past: Double-dealing

Embedded device may appear to be
working fine, while doing evil on the side

Graeme Neilson, “Netscreen of the Dead”

Trojaned firmware

The Future

The way we build things...

The Future?

The Future?
The illusion of
“saving money with
computers”

Home energy
management? /
“Smart Grid” ?

Medical devices? /
Remote health care?

you name it...

A radio-controlled
defibrillator?

Kevin Fu et al.,
Defcon 16

Once past the
software radio
analysis, the protocol
is PLAIN text

Have a programmer,
will reprogram hearts

(2b || ! 2b) * 100M
To remote admin or not to
remote admin?

To trust or not to trust
(the network environment)?

To trust or not to trust
(remote systems)?

Will old engineering solutions
scale up to 100M?

When we have 100M
computers...

How do we extend trust to them?

How do we keep all of them
trustworthy?

When we have 100M
computers...

Should they have remote administration
interfaces to get configured, patched,
and upgraded?

YES: huge network attack surface

NO: be prepared to lose/replace entire
generations, often
 [“evolution” = “stuff dies out”]

 -- Dan Geer, SOURCE Boston, ‘08

When we network
100M computers...

How do we commission/config/replace them?

Must be easy, not require special training
(e.g., in a Home Area Network)

“Plug it in, it just works” =>

Devices must TRUST their network
environment to learn configs from it

“Just trust the first
message”

The only way to authenticate a message is
to share a secret (or public key) with the
trusted origin/environment

How will this secret get to the new device?

human_op * 100M =

Can we authenticate
100M devices?

Old style auth: what you
{have, know, are}/
{lost, forgot, used to be}

What would managing
100M keys cost?

PKI experience: keys may
be costlier than devices!

?

?

?

“C”, confidentiality:
Crypto Chicken vs Egg

Key material to secure
link layer (L2)

...is exchanged via
protocols in L3!

programming with
drivers/frames rather
than sockets sucks

“I”, integrity:
Run twice as hard to

remain in place
How much to:

push patches * 100M = ?

runtime integrity computation
CPU cost * 100M = ?

maintain white list of trusted configs ?

...and other fun
adventures...

