
Advanced Protocol Fuzzing –

What We Learned when Bringing Layer2 Logic

to SPIKE Land

... and later we went on to Sulley Land ;-)

Enno Rey & Daniel Mende

{erey,dmende}@ernw.de

Notice

� Everything you are about to see,
hear, read and experience is for
educational purposes only. No
warranties or guarantees implied or
otherwise are in effect. Use of these
tools, techniques and technologies
are at your own risk.

Agenda

� The Need for a Layer2 Fuzzer

� Fuzzing Landscape & Options

� Why we Initially Chose SPIKE

� Limitations & Additional Features we Implemented

� Some Protocols and Results

� The Journey Goes on... here comes Sulley

Definition

� “Fuzz testing or Fuzzing is a Black Box software testing
technique, which basically consists in finding
implementation bugs using malformed/semi-malformed
data injection in an automated fashion
http://www.owasp.org/index.php/Fuzzing

� “A highly automated testing technique that covers
numerous boundary cases using invalid data (from files,
network protocols, API calls, and other targets) as
application input to better ensure the absence of
exploitable vulnerabilities.” Peter Oehlert, “Violating
Assumptions with Fuzzing”, IEEE Security & Privacy,
March/April 2005

The Need for a Layer 2 Fuzzer

� So far nothing available in the “free tool space”.

� Quite some options in commercial space (think of
BreakingPoint, Mu, Codenomicon et.al.), but all these very
pricey.

� Multi purpose L2 packet crafter(s) out there (mainly
yersinia)… but the focus of those tools is
– regarding accuracy in fulfilling specifications –
completely different from that of a fuzzer ;-)

Why did we jump into this field?

� See above: know the feeling “it would be nice to have a
tool at hand that does...“ ?

� To gain some understanding of the way network fuzzers
(and frameworks) work.

� Gain some understanding of specific protocols.
� => so far we mostly implemented “exotic protocols“ (e.g. no STP...)

� To be able to “get an impression“ of a device‘s robustness
in a given scenario.

� Not (too much): vulnerability research. We did not try to
find the exact parser weaknesses. However... you could ;-)

Fuzzing Landscape & Options

� Quite some fuzzers/frameworks available

� Most of them: unmaintained or one-man projects

� Interesting Fuzzing Frameworks

� SPIKE

� autodafé

� Peach

� GPF – General Purpose Fuzzer
� With Evolutionary Fuzzing System (EFS)

� Sulley

Why we Initially Chose SPIKE

� Includes “proven” fuzzing strings

� Written in C

� Efficiency:

� Write a generic program once (e.g. for TCP, UDP or Layer 2)

� Add context-based payloads to this generic program via scripting
interface (protocol descriptions)

� Very easy to use framework functions

� Can be used in the scripts or in a “common C program”

� Complete code under GPLv2

� In the meantime we prefer Sulley… wait for later part of talk…

How to run SPIKE

� Get package

� Unpack, ./configure, make

� Open shell and use one

� of the programs for specific purposes

� probably a script is also needed

� of the more generic programs

� you have the write your own script(s) per protocol

� Or write a new specific / generic program (we did)

SPIKE, Sample Script

//netbios

s_int_variable(0x81,3); //session type //sessionon request

s_int_variable(0x00,3); //flags

s_binary_block_size_halfword_bigendian_variable("netbiosbl
ock");

s_block_start("netbiosblock");

//*SMBSERVER

s_string_variable(" CKFDENECFDEFFCFGEFFCCACACACACACA");

s_binary("00");

//LOCALHOST

s_string_variable(" EMEPEDEBEMEIEPFDFECACACACACACAAA");

s_binary("00");

s_block_end("netbiosblock");

Protocol Definitions –

The Simple Approach

� Sniff packets

� Transform structures to prot. definition

� Wireshark is your friend here ;-)

� You still need a basic understanding of
the stuff...

Simple Example: ARP

s_binary("00 01"); /* Hardware Type -> here Ethernet (1)*/

s_binary("08 00"); /* Protocol Type -> here IP (8) */

s_binary("06"); /* Hardware size -> here MAC (48Bit) */

s_binary("04"); /* Protocol Size -> here IP (32Bit) */

s_binary("00 01"); /* Opcode (1->request, 2->reply) */

s_string_variable("01 02 03 04 05 06"); /* MAC-Src */

s_string_variable("c0 a8 5f b5"); /* IP-Src */

s_string_variable("00 00 00 00 00 00"); /* MAC-Dst */

s_string_variable("c0 a8 5f b6"); /* IP-Dst */

Problem here:
s_string_variable takes any string, not just those with length of six bytes

=> We added a new function s_string_variable_sized

General Limitations

� SPIKE mostly does string / integer based fuzzing

� => addition of s_string_variable_sized()

� SPIKE is byte-oriented

� No handling of protocol information with “odd sizes” possible

� No handling of bit fields (e.g. TLVs)

� One of the reasons why we later switched to Sulley

� No fuzzing with/of predefined values possible

� Added function s_binary_selection

� Did not work from SPK scripts due to parser weaknesses

Additional Features we Implemented

� Generic L2 sender (Ethernet II and IEEE802.3)

� Selection of random or fixed ethernet-src

� Additional functions

� s_random_fuzz(), s_random_fuzz_repeat()
fuzz completely random data with fixed size
[based on POSIX rand()]

� s_binary_type_and_block_size_lldp()

� l2_write_data()

� s_binary_selection()

� s_string_variable_sized()

Overview ;-)

generic_send_l2.c

+spike_send()

+spike_init_l2()

+s_binary_type_and_block_size_lldp()

+add_size_listener_lldp()

+close_a_size()

spike.c listener.c

listener.h

-struct listener

-struct lldpTlv

+l2_write_data()

l2stuff.c

l2stuff.h

spike.h

-struct spike

tcpstuff.c udpstuff.c

tcpstuff.h udpstuff.h dlrpc.h

+s_parse()

dlrpc.c

dlargs.h

libnet.h

Let‘s go practical then

Some of the protocol definitions
we‘ve added so far:

� MPLS

� LLDP

� VTP

� DTP

� WLCCP (only for Sulley)

MPLS

� Not really “a protocol” but a set of technologies and
protocols.

� In the very basic technology a 32-bit header is inserted
between Layer2 and Layer3 header (here on ethernet).

� Definition and subsequent fuzzing of these 32 bit are easy.

� We did not split up the 32 bits into dynamic and static
pieces (like the EXP part) or limit ranges.

� Testbed: some Cisco 7200 routers running Service
Provider images. Processed packets without problems.

MPLS Label Header

LABEL EXP S TTL

0 1920 22 2324 31

� 20-Bit Label

� Short information entity without further internal structure

� 3-Bit Experimental-Bits (e.g. for CoS)

� 1-Bit Bottom-of-Stack Indicator (Label Stack)

� 8-Bit TTL-Field (Loop Mitigation)

MPLS (header) protocol definition

� Uses INTELENDIANWORDs (= 32 Bits)

is_int_fuzz_variable(9); /* 9 equivalent to INTELENDIANWORD */

s_binary(“PACKET CONTENT“);

...

� Demo

LLDP

� Pretty complex protocol

� Works with Type-Length-Value (TLV) structures

� Ethernet-Header (type 0x88cc), packets sent to multicast-
address 01:80:c2:00:00:0e

� Due to “SPIKE’s byte limitation” (and odd TLVs) initially it
was not possible to fuzz LLDP, with SPIKE and L2-addon

� => addition of s_binary_type_and_block_size_lldp()

� gets an integer as the TLV-type

� Plus char* as the name of the block

LLDP (2)

� When multiple packets (containing
different information) arrive from same
source MAC address the packets are
discarded

=> random source MACs needed
=> generic_send_l2 rewritten with
random_mac_option

LLDP format

LLDP format (2)

LLDP (small excerpt!)

s_binary_type_and_block_size_lldp(1, "block_chassis"); /* TLV Type: Chassis Id(1) + TLV Length:
7 */

s_block_start("block_chassis");

s_push_int(7, 3); /* Chassis Id Subtype: 1,2,3,4,5,6 or 7 */

s_string_variable_sized("000130f9ada0", 1, 255); /* Chassis Id (dependes on Chassis ID Subtype)
*/

s_block_end("block_chassis");

s_binary_type_and_block_size_lldp(2, "block_port"); /* TLV Type: Port Id (2) + TLV
Length: 4 */

s_block_start("block_port");

s_int_variable(7, 3); /* Port Id Subtype: 1,2,3,4,5,6 or 7
*/

s_string_variable_sized("312f31", 1, 255); /* Port Id: 1/1 */

s_block_end("block_port");

s_binary_type_and_block_size_lldp(3, "block_ttl"); /* TLV Type: Time to Live (3) + TLV
Length: 2 */

s_block_start("block_ttl");

s_push_int(120,5); /* Seconds: 120 */

s_block_end("block_ttl");

s_binary("00 00"); /* TLV Type: End of LLDPDU (0) + TLV Length: 0
*/

Results – LLDP

02:29:33: LLDP rx state on FastEthernet0/3 set to WAIT FOR FRAME

02:29:33: LLDP advertisement packet RX'd on intf FastEthernet0/3

02:29:33: LLDP advertisement packet RX'd on intf FastEthernet0/3

02:29:33: LLDP rx state on FastEthernet0/3 set to RX FRAME

02:29:33: LLDP unknown tlv type 127 recd - ignoring it

02:29:33: LLDP malformed optional TLV 127 found - ignored

02:29:33: LLDP entry update - new neighbor C:\ discovered

[…]

02:29:33: LLDP-MED orig state on FastEthernet0/3 is DOWN, rcvd caps 0x0000

02:29:33: LLDP rx state on FastEthernet0/3 set to WAIT FOR FRAME

02:29:33: LLDP malformed optional TLV 127 found - ignored

02:29:33: LLDP entry update - new neighbor discovered

02:29:33: LLDP-MED orig state on FastEthernet0/3 is DOWN, rcvd caps 0x0000

02:29:33: LLDP rx state on FastEthernet0/3 set to WAIT FOR FRAME

02:29:33: LLDP rx state on FastEthernet0/3 set to RX FRAME

02:29:33: LLDP unknown tlv type 127 recd - ignoring it

02:29:33: LLDP malformed optional TLV 127 found - ignored

02:29:33: LLDP entry update - new neighbor

../../../../../../../../../../../../localstart.asp%00 discovered

02:29:33: LLDP-MED orig state on FastEthernet0/3 is DOWN, rcvd caps 0x0000

02:29:33: LLDP rx state on FastEthernet0/3 set to WAIT FOR FRAME

Results (reproducible) – LLDP

c3560#more flash:crashinfo/crashinfo_1

Cisco IOS Software, C3560 Software (C3560-ADVIPSERVICESK9-M), Version

12.2(40)SE, RELEASE SOFTWARE (fc3)

Copyright (c) 1986-2007 by Cisco Systems, Inc.

Compiled Fri 24-Aug-07 01:43 by myl

Instruction TLB Miss Exception (0x1200)!

SRR0 = 0x2A2A2A28 SRR1 = 0x00029230 SRR2 = 0x0059574C SRR3 = 0x00021200

ESR = 0x00000000 DEAR = 0x00000000 TSR = 0x8C000000 DBSR = 0x00000000

CPU Register Context:

Vector = 0x00001200 PC = 0x2A2A2A28 MSR = 0x00029230 CR = 0x40000002

LR = 0x2A2A2A2A CTR = 0x00000000 XER = 0x0000003F

R0 = 0x2A2A2A2A R1 = 0x02F44E28 R2 = 0x00000000 R3 = 0x02F45050

R4 = 0x019CFC7D R5 = 0xFFFFFFFF R6 = 0x02F44D90 R7 = 0x00000000

R8 = 0x00000000 R9 = 0x02F450B3 R10 = 0x02F450B3 R11 = 0x02F450B2

[...]

Stack trace:

PC = 0x2A2A2A28, SP = 0x02F44E28

Frame 00: SP = 0x2A2A2A2A PC = 0x2A2A2A2A

VTP

� Good Cisco dokumentation

� http://www.cisco.com/warp/public/473/21.html

� ISL or IEEE 802.1q encapsulated

� IEEE 802.3 Ethernet Header

� Logical Link Control Header

� Subnetwork Access Protocol Header

VTP packet format

� 3 types of VTP messages:

� Summary Advertisements

� Subset Advertisements

� Advertisement Requests

VTP packet format

� Summary Advertisement Packets

� (Per default) transmitted every five minutes

� Include the name of the VTP domain

� Populate the current revision number of the VLAN-
database

VTP packet format

VTP packet format

� Subset Advertisement Packet

� Transmitted in answer to an advertisement request

� Contains multiple VLAN-Info fields

� One or more Subset Advertisement packets represent the
complete VLAN-Database

VTP packet format

VTP packet format

� Advertisement request Packets

� Transmitted in three cases:

� VLAN-Database is empty (after reset)

� VTP-Domain changed

� Summary Advertisement with higher revision no. received

Spike scripts

VTP Summary Advertisement
s_binary("aa"); /* DSAP */

s_binary("aa"); /* SSAP */

s_binary("03"); /* func */

s_binary("00000c"); /* Orga-code */

s_binary("2003"); /* VTP */

s_int_variable(1,3); /* version - ONEBYTE */

s_binary("01"); /* code */

s_int_variable(0,3); /* followers - ONEBYTE */

s_binary_block_size_byte_variable("MgmtD"); /* MgmtD length */

s_block_start("MgmtD");

s_binary("66757a7a696e67"); /* Mgmt Domain = "fuzzing" */

s_block_end("MgmtD"); /* end MgmtD length */

s_binary("00"); /* fill Domain to
32 byte */

s_int_variable(111,1); /* configuration revision number - BINARYBIGENDIAN */

s_int_variable(0,1); /* update identity - BINARYBIGENDIAN */

s_random_fuzz(12); /* update timestamp */

s_binary("0000000000000000"); /* md5 digest / password - 16 bytes length */

Spike scripts

VTP Subset Request
s_binary("aa"); /* DSAP */

s_binary("aa"); /* SSAP */

s_binary("03"); /* func */

s_binary("00000c"); /* Orga-code */

s_binary("2003"); /* VTP */

s_int_variable(1, 3); /* version - ONEBYTE */

s_binary("03"); /* code */

s_int_variable(0, 3); /* rsvd - ONEBYTE */

s_binary_block_size_byte_variable("MgmtD"); /* MgmtD length */

s_block_start("MgmtD");

s_binary("66757a7a696e67"); /* Mgmt Domain = "fuzzing" */

s_block_end("MgmtD"); /* end MgmtD length */

s_binary("00");
/* fill Domain to 32 byte */

s_random_fuzz(32); /* start value */

VTP, Results

� Tested with several Cisco switches (29xx, 35xx, 3750,
6509).

� Nearly no effect ����
[albeit packets obviously processed]

Possible cause for VTP (non-)results

DTP Packet Format

� No Cisco documentation publicly available

� But there is a wireshark parser...

� Which saved us a lot of work ;-)

� Looking at the yersinia code would have been another
option...

DTP Packet format

� Same encapsulation as VTP with the Subnetwork Access
Protocol Header type of 0x2004

� Based on Type-Length-Value entries with:

� 2 Bytes type

� 1 Byte length

� The data

� 4 known types:

� Domain – contains the DTP Domain name

� Status – contains the DTP Status

� Type – contains the DTP Type

� Neighbor – contains the MAC address of the neighbor

Changes made to Spike

� Modified the layer2stuff to support IEEE 802.3 headers

� Modified the creation of fuzz-integers to cover the whole
WORD range

� And of course: created a Spike script for DTP

Spike scripts – DTP
s_binary("aa"); /* DSAP */

s_binary("aa"); /* SSAP */

s_binary("03"); /* func */

s_binary("00000c"); /* Orga-code */

s_binary("2004"); /* DTP */

s_block_start("Domain");

s_binary("0001"); /* Type: Domain */

s_binary_block_size_byte("Domain"); /* Domain length */

s_binary("00"); /* Domain: none */

s_block_end("Domain");

s_block_start("Status");

s_binary("0002"); /* Type: Status */

s_binary_block_size_byte("Status"); /* Status length */

s_int_variable(0, 3); /* Status - ONEBYTE */

s_block_end("Status");

s_block_start("DTPtype");

s_binary("0003"); /* Type: DTPtype */

s_binary_block_size_byte("DTPtype"); /* DTPtype length */

s_int_variable(1, 3); /* DTPtype - ONEBYTE */

s_block_end("DTPtype");

s_block_start("Neighbor");

s_binary("0004"); /* Type: Neighbor */

s_binary_block_size_byte("DTPtype"); /* Neighbor length */

s_int_variable(0, 1); /* Neighbor byte 0,1 - BINARYBIGENDIAN */

s_int_variable(0, 1); /* Neighbor byte 2,3 - BINARYBIGENDIAN */

s_int_variable(0, 1); /* Neighbor byte 4,5 - BINARYBIGENDIAN */

s_block_end("Neighbor");

Results – DTP

� Tested against same testbed.

� On some devices/images while fuzzing (on one switchport)
strange things happen:

� Trunk on other (!!) ports goes down and up and down up …

� Some ports set to mode blocking

� The device blinks like a Christmas tree

� …

This does _not_ look good ;-)

00:57:55: FEC: get-fechannel: port (Fa0/2) not part of fechannel line
= 2311 func = strata_dma_done_desc_rx: Received packet for unit 0,
swport 0

Inst base port = 0, dcb port = 0

[0000]: {01000CCCCCCC} {000102030405} 002E AAAA

00:57:55: 00100300 000C 2004 0001 0400 0002 0400 0003

00:57:55: 00200401 0004 0000 0000 0000 0000 0000 0000

00:57:55: 00300000 0000 000B 6C61 6C61 6C61

00:57:55: line = 746 func = process_rx_packet iport = 0x0

linkType = 114 line = 879 func = process_rx_packet

line = 2207 function= strata_dma_done_desc_rx

[… SNIP …]

pm_vlan_rem_port: vlan 4093, port 1

pm_vlan_rem_port: vlan 4094, port 1

cled_vp_list_fwdchange: state 0(fwd 1)

cled_vp_list_fwdchange: [1] blocked 1

hmat_handle_pm_vp_fwdchange Interface Fa0/2, Vlan 1 changed state to
blocking

mat_enable_disable_addrs: type:2, port:Fa0/2

“Blinking like a Christmas tree“

A new kid in town: Sulley

� We decided to switch from SPIKE to the Sulley fuzzing
framework

� It can use SPIKE-Scripts without major changes

� No more crappy SPIKE Parser ;)

� Real python instead

� NO MORE BYTE LIMITATION, because Sulley brings the s_bit_field
which is really useful for layer2 fuzzing

Bring Sulley to layer2

� Very easy to implement

� Sulley code is easy to modify

� The patch only has some 100 lines

� We found (and fixed) a bug in the
s_bit_field function, too.

� Additionally we added a flag to the
s_size function to avoid the byte
limitation.

First Sulley scripts

� After bringing L2 logic to Sulley we tested the new
capability with some of the SPIKE scripts

� ARP was very easy

� Only adjust the syntax (from SPIKE to python)

� Add some Sulley session handling stuff

� DTP was easy, too. But we did not see the same results… why?

� Other fuzz strings

� We didn’t fuzz the whole variable range, as we did in SPIKE

The Sulley ARP script

from sulley import *

s_initialize("arp")

s_binary("0xff ff ff ff ff ff")

s_binary("0x01 02 03 04 05 06")

s_binary("0x08 06")

s_binary("0x00 01") #/* Hardware Type -> here Ethernet (1)*/

s_binary("0x08 00") #/* Protocol Type -> here IP (8) */

s_binary("0x06") #/* Hardware size -> here MAC (48Bit /6Byte) */

s_binary("0x04") #/* Protocol Size -> here IP (32Bit /4Byte) */

s_binary("0x00 01") #/* Opcode (1->request, 2->reply) */

s_binary("0x01 02 03 04 05 06") #/* MAC-Src */

s_binary("0xc0 a8 5f b5") #/* IP-Src */

s_binary("0x00 00 00 00 00 00") #/* MAC-Dst */

s_binary("0xc0 a8 5f b6") #/* IP-Dst */

s_random(0x0000, 1, 5)

sess = sessions.session(proto="layer2", iface="eth0")

sess.connect(s_get("arp"))

target = sessions.target("layer2", 1234)

sess.add_target(target)

sess.fuzz()

Another protocol definition: WLCCP

� The next protocol on our list was
Cisco’s proprietary
Wireless Lan Context Control Protocol

� Serves for some special (wire based)
Inter-AP communication in Cisco networks

� We think protocol is flawed
(architecture wise) anyway.
Might be topic for another talk ;-)

� No documentation available
� Wireshark gives a starting point, but as the implementation seems

incomplete and flawed (at least at layer2) there was (and is) a lot
more work to do.

The WLCCP Sulley script (excerpt ;-)

from sulley import *

s_initialize("WLCCPoUDP")

s_block_start("Payload")

s_byte(0x1c) #Version

s_bit_field(1, 2) #SAP Version

s_bit_field(0, 6) #SAP ID

s_word(0x0008) #Dest Node type

s_size("Payload", length=2, endian=">") #Length

s_bit_field(0, 2) #Subtype

s_bit_field(11, 6) #Base MsgType

s_byte(0x00) #Hops

s_byte(0x0001) #MsgID

s_bit_field(8192, 16) #Flags

s_word(0x0001) #Originator Node type

s_bit_field(0x000cce333225, 48) #Orginator MAC

s_word(0x0008) #Responder Node type

Results – WLCCP

� Not too many (reliable) results, probably because WLCCP
requires quite ”some state”

� However every now and then APs crash and need hard
resets afterwards. So far we are not able to reproduce this
behavior in a controlled manner.

� Next steps:

� Reverse engineer the protocol

� Understand the WLCCP state machine and build different scripts for all
the states

The Code

� Will this stuff be available?

� Yes! On our website:
� http://www.ernw.de/download/l2spike.tar.bz2

� http://www.ernw.de/download/l2sulley.tar.bz2

� Given these are stress testing tools ;-), no problems to
expect with §202c...

� We will continue developing this stuff and will add new
protocol definitions (there are so many interesting L2
protocols out there...)

Talking about code… some old stuff
updated: snmpattack.pl

usage: snmpattck.pl [-hIrv] [-A type] [-c comm1,comm2] [-C tftp] [-f target] [-s type]

[-l delimiter] {ip/range | input file}

-A type : Do APC specific attacks (type: 1 = allON, 3 = allOFF, 4 = allREBOOT)

-c comm : Add communities to check for (comma separated)

-C tftp : Do Cisco specific attacks and specify a tftp server for config upload

-f target: Switch to flood-mode

-h : Print this help

-I : Do InnoMedia specific attacks

-l : Parse IPs from file, separated with the given delimiter

-p port : The port for tcp syn scan (default = 80)

-r : Test for RO / RW community

-s type : Scans the given ip/range (type: snmp, icmp, syn | default = snmp)

-t num : Count of parallel scans (default = 10)

-v : Be verbose

scan and attack all found devices:

$0 -I 10.0.0.0/24

scan and use all founds as relay hosts:

$0 -s syn -p 21 -v -f 1.2.3.4 10.0.0.0/24

� http://www.ernw.de/download/snmpattack.pl

Summary

� SPIKE did a good job, Sulley will do even better.

� We learned a lot about fuzzing frameworks and protocols
during that project.

� Hopefully you find some of the project‘s outcome helpful...

� And, btw: some network devices from $SOME_BIG_VENDOR
might have parser problems...

� See you @ Saturday Night Party ;-)

Questions?

Thanks for your attention!

www.troopers08.org

