I >(®)ERNW |
d providing security.

Xenpwn

Breaking Paravirtualized
Devices

Felix Wilhelm

| (#®)ERNW |
d providing security.

#whoami -~ Security Researcher @ ERNW
Research

- Application and Virtualization
Security
- Recent Research

- Security Appliances (Fireeye, Palo Alto)
- Hypervisors (Xen)

- (@ _fellxon Twitter

16.03.16 #2 www.ernw.de

' >(®) ERNW |

Agenda

- Device Virtualization & Paravirtualized Devices
- Double Fetch Vulnerabilities

- Xenpwn: Architecture and Design
- Results

- Case Study: Exploiting xen-pciback

4[14/16 #3 www.ernw.de

| (#®)ERNW |
d providing security.

Device Virtualization

- Virtualized systems need access to
intel. virtual devices

82078 44 PIN
CHMOS SINGLE-CHIP FLOPPY DISK CONTROLLER

m Small Footprint and Low Height m Integrated Tape Drive Support - D i S k) N etWO r k) S e ri a l y v

Package — Standard 1 Mbps/500 Kbps/
Power M: 250 Kbps Tape Drives
— Application Software Transparency m Perpendicular Recording Support for
4 ives

“ommeren o <1 F@AITIONAlly: Device emulation

— Save and Restore Commands for
Zero-Volt Powerdown m Fully Decoded Drive Select and Motor

— Auto Powerdown and Wakeup Signals

e - Emulate old and well supported

—zlt;':sumes No Power While in W Addresses 256 Tracks Directly,
Supports Unlimited Tracks

Powerdown

m Integrated Analog Data Separator m 16 Byte FIFO h a rd Wa re d eV i C e S

— 250 Kbps m Single-Chip Floppy Disk Controller

— 300 Kbps Solution for Portables and Desktops

Z Vope Z Fuly Gompatibis with Intetags™ SL ' '
e ot e Osctaor | ey S o o - Guest 0OS does not need special drivers
- ﬂ°[‘,’r‘i"‘,'ens'2':c§;‘c‘;‘t’m (F:?n::::ﬁd m Separate 5.0V and 3.3V Versions of the

— Selectable Boot Drive 44 Pin part are Avallable

— Standard IBM and ISO Format m Available in a 44 Pin QFP Package — |n5ta[[at|on W|th Standard |n5ta[[at|on

Features
— Format with Write Command for
High Performance in Mass Floppy

sources supported

4[14/16 #4 www.ernw.de

Paravirtualized Devices

- Most important downsides of emulated devices:
- Hard to implement securely and correctly
- Slow performance
- No support for advanced features

- Solution: Paravirtualized Devices
- Specialized device drivers for use in virtualized systems

- ldea: Emulated devices are only used as fallback mechanism
- Used by all major hypervisors

4[14/16 #5 www.ernw.de

| ~(®)ERNW |
d providing security.

Paravirtualized Devices

- Split Driver Model

- Frontend runs in Guest system

Managenent Guest - Backend in Host/Management domain
User Applications User Applications = Te rm i n O I_O gy d iffe rS b e twe e n
hypervisors
Backend Frontend - \/SC / \/SP Iﬂ Hyper—v

— Virtio devices and drivers

[FR— » Shared Memory |---------*

- Implementations are quite similar

4/14/16 #6 www.ernw.de

| >(#®) ERNW |
d providing security.

Paravirtualized Devices . PV devices are implemented on top of
shared memory

— Great Performance

dome (Par‘avgrc*)tr:l:lized) - Easy to |mp[ement
aeny User Applications - Zero copy algorithms possible
Hodiied Kernel - Message protocols implemented on
Mansatgaecmkent . t 0 p
orver oriver — Xen, Hyper-V and KVM all use ring
; — buffers
T e e] -~ Shared memory mappings can be

constant or created on demand

4/14/16 #7 www.ernw.de

Security of PV Devices

- Backend runs in privileged context =» Communication between
frontend and backend is trust boundary

- Low levelcode + Protocol parsing =» Bugs

- Examples
- Heap based buffer overflow in KYM disk backend (CVE-2011-1750]
- Unspecified BO in Hyper-V storage backend [CVE-2015- 2361]
- Not as scrutinized as emulated devices
- Device and hypervisor specific protocols
- Harder to fuzz

4[14/16 #8 www.ernw.de

Very interesting target

- Device emulation often done in user space €<-> PV backend
often in kernel for higher performance

- Compromise of kernel backend is instant win ©

- PV devices are becoming more important

- More device types (USB, PCl pass-through, touch screens, 3D
acceleration]

- More features, optimizations

- Future development: Removal of emulated devices
- see Hyper-V Gen2 VMs

4[14/16 #9 www.ernw.de

Research goal

- "Efficient vulnerability discovery in Paravirtualized
Devices”

- Core Idea: No published research on the use of shared
memory in the context of PV devices

- Bug class that only affect shared memory? =» Double
fetches!

#10 www.ernw.de

4[14/16

Double Fetch vulnerabilities

- Special type of TOCTTOU bug affecting shared memory.

- Simple definition: Same memory address Is accessed
multiple times with validation of the accessed data
missing on at least one access

- Can introduce all kinds of vulnerabilities

— Arbitrary Write/Read
- Buffer overflows
— Direct RIP control ©

4/14/16 #11 www.ernw.de

I o- EBNW_t |
d providing security.
Double Fetch

vulnerabilities ~ Term “double fetch” was coined by Fermin
J.Serna in 2008

- But bug class was well known before that

e e .~ OOME INteresting research published in

nnnnnnn tor.net/2015/12/xen-xs... #XSA155 2007/2008

__— - Usenix 2007 "Exploiting Concurrency
€ ocu == Vulnerabilitiesin System Call Wrappers™ -
@_fel1x Small history fix: Robert N. M. Watson
twitter.com/grsecurity/sta..., see also: _ CCC2007: “FromRINGOtoUIDO” and Phrack
osronline.com/article.cfm?ar... H#64 file b o tWiz sgrakkyu
?crlcs:::)::‘t;iir?:zg;;bysgrakkyu/twiz(se92.4.2): phrack.org/issues.htmi?is. . = Flrst exa m ple | COUl_d flnd |S Sendmsg []

linux bug reported in 2005
- Happy to hearabout more ©

4/14/16 #12 www.ernw.de

I : Ji‘:nt cmsghdr_from_user_compat_to_kern(..) o- ERNW I

providing security.
s .. of
4 while(ucmsg != NULL) {

) if (get_user (ucmlen, &ucmsg->cmsg_len))

6 return -EFAULT;
7 [...]
8 tmp = ((ucmlen - CMSG_COMPAT_ALIGN(sizeof (*ucmsg))) +
9 CMSG_ALIGN (sizeof (struct cmsghdr)));
10 kcmlen += tmp;
11 [- . -]
12 }
13
14 if (kcmlen > stackbuf_size)
15 kcmsg_base = kcmsg = kmalloc(kcmlen, GFP_KERNEL) ;
16
17 while(ucmsg != NULL) {
— __get_user(ucmlen, &ucmsg->cmsg_len); Exa m p le :sen d m Sg []
19
20 if (copy_from_user (CMSG_DATA (kcmsg) ,
21 CMSG_COMPAT_DATA (ucmsg) ,
22 (ucmlen - CMSG_COMPAT_ALIGN(sizeof (*ucmsg)))))
23 [...]
24 }

4/14/16 #13 www.ernw.de

Bochspwn

- “ldentifying and Exploiting
Windows Kernel Race Conditions
via Memory Access Patterns”

(2013)
- by j00ru and Gynvael Coldwind
Svochs

e = - Uses extended version of Bochs
CPU emulator to trace all memory
access from kernel to user space.

4[14/16

#14 www.ernw.de

| (#®)ERNW |
d providing security.

Bochspwn

- Resulted in significant number of Windows bugs (and a
Pwnie)
— but not much published follow-up research

- Whitepaper contains detailed analysis on exploitability of
double fetches
- On multi core system even extremely short races are exploitable

- Main inspiration for this research.

#15 www.ernw.de

4[14/16

d providing s ty
) 1 MOV ecx, [edi+18h]
> ;[..]
3 push 4
4 push eax
5 push ecx
6 call _ProbeForWrite

7 push dword ptr [esi+20h]
s push dword ptr [esi+24h]

=) 9 push dword ptr [edi+18h]
10 call _memcpy

Example: Bochspwn

nt!ApphelpCachelLooku
pEntry

4/14/16 #16 www.ernw.de

Xenpwn

- Adapt memory accesstracing approach used by Bochspwn for
analyzing PV device communication.
- Why not simply use Bochspwn?
- Extremely slow
- Passive overhead [no targeted tracing]
- Compatibility issues
- Dumping traces to text files does not scale

- |ldea: Implement memory accesstracing on top of hardware
assisted virtualization

4[14/16

#17 www.ernw.de

| (#®)ERNW |
d providing security.

Trace | _|Analysis
Storage Client
H
i___ T L2 domO L2 domU
Collector
Backend [«-;r1> Frontend
VMl [--- : _________
L1 domO 5 L1 Hypervisor
" LOHypervisor

4/14/16 #18 www.ernw.de

| ~(®)ERNW |
d providing security.

Aenpwn Architecture - Nested virtualization

- Target hypervisor [L1) runs on top of

Trace | _]|Analysis base hyperV|Sor[LO]
Storage Client . .
; 1., | — Analysis components run in user
""clﬂaz‘i?or b space of L1 management domain.
Backend <1~ Frontend
o | - - No modification to hypervisor required
Cidom0__| L1 Hyporvor | - Bugs in these components do not crash
loHyperisor T whole system

- LO hypervisor is Xen

4/14/16 #19 www.ernw.de

LibVMI - Great library for virtual machine

introspection (VMI]
- Hypervisor agnostic (Xen and KVM)

- User-space wrapper around hypervisor
APls

- Allows access to and manipulation of
guest state ([memory, CPU registers)

- Xen version supports memory events

4/14/16 #20 www.ernw.de

o& Evﬁ QNCWW- I

LibVMI| Memory Events

- Trap on access to a guest physical
auto event = new vmi_event_t(); address
event->type = VMI_EVENT_ME&ORY;

event->mem_event.physical_address = paddr; — | m p I.e m e nte d O n to p Of EXt e n d e d

event->mem_event.npages = 1;

event->mem_event.granularity = granularity; Pa g e Ta b le S [E PT]
event->mem_event.in_access = access;

event->callback = callback; — D isa HOW access to G PA

if (vmi_register_event(s->vmi, event) != VMI_SUCCESS) ACC@SS triggers EPT ViO[atiOﬂ and \/M
{ /*... */} .
exit

- VM exit is forwarded to libvmi handler

4/14/16 #21 www.ernw.de

| o-(®) ERNW |

Memory Access Tracing
with UbVMI 1. Find shared memory pages
sIE?SSe «-{ ARalVSIS 2. Register memory event handlers
I 3. Analyze memory event, extract
| Trace needed information and store In
Collector trace storage.
; 4. Run analysis algorithms (can
WMl Lo happen much later)

L1 domO

4/14/16 #22 www.ernw.de

Trace Collector

- Use libvmi to inspect memory and identify shared memory
pages
- Target specific code.

- ldentify data structures used by PV frontend/backend and
addresses of shared pages

- Registers memory event handlers

- Main work 1s done in callback handler
- Disassemble instructions using Capstone

4/14/16 #23 www.ernw.de

extract domain id

privileged domain?

create empty trace

entry
i E
1 '
yes | new instruction? ¢ no E
di'::ts rﬁf’;‘: rl]e fetch from cache E
a i s
! l !
I I 1
v v d
add to cache / :
instruction stream | *>| createtrace entry E
T '
! '
...................... :
]
v

single step and
continue

add to tracing stream

o& Evﬁ gchty.

Callback handler

4[14/16 #24 www.ernw.de

Trace Storage

- Storage needs to be fast and persistent
- Minimize tracing overhead
- Allow for offline analysis

- Nice to have: Efficient compression
- Allows for very long traces

- Tool that fulfills all these requirements: Simutrace
- simutrace.org

4/14/16 #25 www.ernw.de

| (#®)ERNW |
d providing security.

Simutrace - Open source project by the Operation
System Group at the Karlsruhe Institute of
Technology
- Designed for full system memory tracing
- Allmemory accesses including their content

- C++ daemon+ client library

- Highly efficient communication over shared
memory pages

- Uses specialized compression algorithm
optimized for memory traces

- High compression rate + high speed
- Highly recommended!

4/14/16 #26 www.ernw.de

| >(#®) ERNW |
d providing security.

Trace Entries

For everyunique instruction:
For everymemoryaccess:

A
A rip cr3 | offset
cycle count |f| tag
instruction bytes
instruction pointer
32 bytes 96 bytes
memory address
module_name
data + size v
v

4/14/16 #27 www.ernw.de

I >(®)ERNW |
d providing security.

read next entry from

|mmemmemeeeeeeeeceeceee———— > S)
L. - trace !

yesi- """""""""" e rﬁﬁfv—e'n-tr'v"-’""""""""1 no

b aréﬁgie;nrzgp read access type E

E yes‘ read access? v no E Double FetCh
e cor et |-+ Algorithrr

Simplified version (Ignores
overlapping accesses and
interweaved read/writes)

4/14/16 #28 www.ernw.de

Advantages & Limitations
- Good:

- Low passive overhead

- Largely target independent
- only Trace collector requires adaption

- Easy to extend and develop

- Bad

- High active overhead
- VM exits are expensive

— Reliance on nested virtualization

4/14/16 #29 www.ernw.de

Nested Virtualization on Xen

- Xen Doku: Nested HVM on Intel CPUs, as of Xen 4.4, is

considered “tech preview". For many common cases, it should
work reliably and with low overhead

- Reality:
- Xen on Xen works
- KVM on Xen works [most of the time)
- Hyper-V on Xen does notwork @

- Forthis reason, all of the following results are from Xen
- .. but still hopeful for Server 2016 Hyper-V

4[14/16

#30 www.ernw.de

Results

- Tracing runs for two L1 targets:

Component Xen-Ubuntu Xen-SLES

L1 Hypervisor Xen 4.5.0 Xen 4.4.2 08-1.7
L2 domO OS Ubuntu 15.04 SLES 11 SP4

L2 domO Kernel 3.19.0-18-generic | 3.0.101-63-xen
Management Stack | xI xend

- Differences in supported PV devices
- SCSI, USB

4/14/16 #31 www.ernw.de

' >(®) ERNW |

Results

- Main Problem: Getting good coverage
- No automated way to exercise device functionality implemented

- In the following: Interesting bugs found with default
compiler settings

- Fullthesis contains more statistic about instruction types and
attack surface

4/14/16 #32 www.ernw.de

| Void blkif_get x86_64 req(blkif_request_t *dst, o- ERNW

{

providing security.
blkif_x86_64_request_t *src) of
int i, n = BLKIF_MAX_ SEGMENTS_PER_REQUEST;

dst->operation = src->operation;
dst->nr_segments = src->nr_segments;
/7.
if (src->operation == BLKIF_OP_DISCARD) {
/7. .
}
if (n > src->nr_segments)
n = src—->nr_segments; QEMU xen_disk

for (i = 0; i < n; i++)

dst->segl[i] = src->seglil; Normally not exploitable thanks

to compiler optimizations

4/14/16 #33 www.ernw.de

| ~(®)ERNW |
’j providing security.

1 for (n = 0, i = 0; n < nseg; n++) {

2 //. ..

3 i = n % SEGS_PER_INDIRECT FRAME;
meem) segln].nsec = segments[i].last_sect -

5 segments[i] .first_sect + 1;

seg[n] .offset = (segments[i].first_sect << 9);

~N

8

2 : if ((segments[i].last_sect >= (PAGE_SIZE >> 9)) ||

10 (segments[i] .last_sect < segments[i].first_sect)) {

n rc = -~EINVAL; xen-blkback
12 goto unmap;

13 } 00B Read/Write
14 /7. ..

15 }

4/14/16 #34 www.ernw.de

d providing security.

xen-pciback

4/14/16 #35 www.ernw.de

I >(®)ERNW |
d providing security.

xen-pciback: xen_pcibk_do_op

1 switch (op—>cmd) {

2 case XEN _PCI 0OP_conf read:

3 op—>err = xen_pcibk_config_read(dev,

4 op—>offset, op->size, &op->value);

5 break;

6 case XEN_PCI_OP_conf_write: 1 cmp DWORD PTR [r13+0x4],0x5

7 o« oo

s case XEN{P/’CI_OP_enable_msi: 2 mov DWORD PTR [rbp-Ox4c],eax

9 /. 3 ja 0x3358 <xen_pcibk_do_op+952>
o cese W TR dmsbie e +mov eax,DWORD PTR [r13+0x4]

12 case XEN _PCI_OP_enable msix: s jmp QWORD PTR [rax*8+off 77DO]
13 /7. ..

14 case XEN_PCI_0OP_disable_msix:

15 /7. ..

16 default:

17 op—>err = XEN_PCI_ERR_not_implemented;

18 break;

19 }

4/14/16 #36 www.ernw.de

| o-(®) ERNW |
d providing security.

xen-pciback

- switch statement is compiled into

jump table
- op->cmd == $r13+0x4
1 cm DWORD PTR [r13+0x4],0x5 I I
zmos DWORD PTR [rbp-0x4c],eax B POIntS Into Shared memory
3 ja 0x3358 <xen_pcibk_do_op+952> .
\Bov cax,DUORD PTR [r13+04] - Range check and jump use two

s jmp QWORD PTR [rax*8+off_77D0]

different memory accesses

- Valid compiler optimization
- opls not marked as volatile
4[14/16

#37 www.ernw.de

| ~(®)ERNW |
d providing security.

Exploiting pciback

- Race is very small: 2 Instructions
1 cmp DWORD PTR [r13+0x4],0x5

o DVORD PTR Libpontc] oo - But can be reliably won if guest VM has

s ja 0x3358 <xen_pcibk_do_op+952> m ultlple cores
4 mov eax,DWORD PTR [r13+0x4]

s g wiom> PR [ramavofz 700] = LOSt race does not have any
negative side effects
- Infinite retries possible

"loop_header_%=:\n" . .
e mo - Simple to trigger
"xor dword ptr [rax], 25\n - Send PCl requests while flipping value

"cmp rcex, 5000\n"

"jnz loop_header_%=\n" using XOR

4/14/16 #38 www.ernw.de

Exploiting pciback
- Indirect jJump = No immediate RIP control
- Need to find reliable offset to function pointer
- Load address of xen-pciback.ko i1s random
- Virtual address of backend mapping also not known
- A lot of similarities to a remote kernel exploit

- Chosen approach: Trigger type confusion to get write
primitive

#39 www.ernw.de

4[14/16

| ~(®)ERNW |
d providing security.

Type Confusion

- Second jump table generated for

: void xen_pcibk_frontend_cha.nged(:le;:c;e;e)z‘:_l:;g::i;:_:::i:; Xe n —_ p C i b a C k
3 { - - -
struct xen_pcibk_device *pdev = dev_get_drvdata(&xdev->dev); _ Al m O St d | reCt [y b e h | n d t h e J U m p ta b le
ase Tonbesstavelastialisad: generated for vulnerable function
xen_pcibk_attach(pdev) ;
- XenbusStatelnitialized uses value
e of r13 register as first argument
S - Should be a pointerto a
xen_pcibk_device structure
: - |s a pointer to the start of the shared
1 mov rdi, ri3
2 call 0x3720 <xen_pcibk_attach> memory page @
4[14/16

#40 www.ernw.de

Getting a write primitive

struct xen_pcibk_device {
void *pci_dev_data;
struct mutex dev_lock;
struct xenbus_device *xdev;
struct xenbus_watch be_watch;
u8 be_watching;
int evtchn_irq;
struct xen_pci_sharedinfo *sh_info;
unsigned long flags;
struct work_struct op_work;
struct xen_pci_op op;

};

void __sched mutex_lock(struct mutex *lock)

{

might_sleep();
/*

* The locking fastpath is the 1->0 transition from

* 'unlocked' into 'locked' state.

*/
__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
mutex_set_owner(lock);

4[14/16

<j;;" !é;!ig!t:!l!!&!

xen_pcibk_attachfirst tries to lock the
dev_lock mutex of referenced
structure.

Gives us the possibility to call
mutex_lock with a fake mutex
structure

mutex_lock

- Fastpath: Switch lock count from 1-> 0
- Slowpath: Triggered when lock count !=1

#41 www.ernw.de

o& Evﬁ gchty.

Getting a write primitive:
mutex_lock slowpath 1. mutex_optimistic_spin needs to fail.

- Can be achieved by setting lock->owner
to a readable zero page
2. If lock count still not 1, mutex_waiter
/* add waiting tasks to the end of the waitqueue (FIF0): */ Structure |S Created a nd StO red On

list_add_tail(&waiter.list, &lock->wait_list);

waiter.task = task; StaCk
3. mutex_waiter structure is added to
lock->wait_listand kernel thread
wait 1ist->prev = new; goes to sleep till wake up.

waiter->next = wait_list; > Pointer to waiteris written to attacker

waiter->prev = WRITE_TARGET; ;
WRITE_TARGET->next = new; Controued locatlon.

#42 www.ernw.de

4[14/16

| ~(®)ERNW |
d providing security.

Write Primitive ~ write-where but not write-what

- Pointer to pointer to attacker controlled

data
- Can't simply overwrite function pointers
struct 'List_head.{ B One ShOt _ '
. struct list_head *next, *prev; ~ pciback is locked due to xen_pcibk_do_op

never returning

- |ldea: Add faked entries to a global
linked list.

- Requires known kernel version + no
KASLR or infoleak

4[14/16 #43 www.ernw.de

| >(#®) ERNW |
d providing security.

e fake_prev
controlled data
//
/
/
/
/
/
/
/
e mm—
L el S
/ ”’ \\‘\
/ /’/’ \\\\
y a ~~o
list_head.next r-------- > entryl.next f---------- a entry2.next
] - 7_/:~
list_head.prev entry1.prev , entry2.prev

= e

4[14/16 #44 www.ernw.de

After

list head.next

list_head.prev

4[14/16

-(®) ERNW

o]

fake_prev

next

prev

controlled data

waiter

#45

providing security.

www.ernw.de

| >(#®) ERNW |
d providing security.

Overwrite Target - Global data structure

— Need to know address of list_head

- No new elements should be
=== attached during run time
e - list_head.prev is not changed, new
e _— entry might be added directly behind
Iist_head.n;(t l. | St_h ea d

- Needs to survive one “junk” entry

— No full control over waiter structure/
stack frame

4[14/16 #46 www.ernw.de

o& Evﬁ gchty.

linux/fs/exec.c

Copyright (C) 1991, 1992 Linus Torvalds

9 ¥

11 * Demand-loading implemented 01.12.91 - no need to read anything but

12 * the header into memory. The inode of the executable is put into

13 * "current->executable"”, and page faults do the actual loading. Clean.

14 *

15 * Once more I can proudly say that linux stood up to being changed: it

16 * was less than 2 hours work to get demand-loading completely implemented.
17 *

18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary

22 * formats.

23 ¥/

4114/16 #47 www.ernw.de

o& Evﬁ QNCW

fs/exec.c: formats - formats linked list contains entries for

different file formats supported by
static LIST_HEAD(formats); exec

.. ey

__ - #!shell scripts
list_for_each_entry(fmt, &formats, 1h) {

if (ltry_module_get(fmt->module)) — a.out format

ti ; . .
read_unlock(8binfmt_lock): - Walked every time exec* syscallis
bprm->recursion_depth++; called to load input file.
retval = fmt->load_binary(bprm);]] _
read_lock(&binfmt_lock); - waiter entry is skipped because

try_module_get function fails

4[14/16 #48 www.ernw.de

' >(®) ERNW |

Getting Code Execution

- Set address of load_binary pointer to stack pivot

- ROP chain to allocate executable memory and copy
shellcode

- vmalloc_exec + memcpy

- Restore original formats list
- $shellcode
- Return to user space

4[14/16 #49 www.ernw.de

d providing security.

Demo ©

4/14/16 #50 www.ernw.de

>-(®)ERNW |
d providing s

Thesis, Whitepaper & Code

- Master Thesis describing Xenpwn In greater detail can be
found online:

https://os.itec.kit.edu/downloads/ma_ 2015 wilhelm felix
discover software vulnerabilities.pdf

- Exploit code + Whitepaper for pciback vulnerability will be
released after Infiltrate

- Xenpwn open source release: May 2016

4[14/16

Future Work
- Use Xenpwn against Hyper-V and VMWare

- Requires improved support for nested virtualization

- |Identify and analyze other shared memory trust
boundaries
- Sandboxes?

- What types of bugs can we find with full memory traces?

#52 www.ernw.de

4[14/16

Thanks tor your attention!

Q&A

0)) Also visit our blog: https://insinuator.net

YW o oeux

D<K fwilhelm@ernw.de

16.03.16

#53 www.ernw.de

