
www.ernw.de

Xenpwn
Breaking Paravirtualized
Devices

Felix Wilhelm

www.ernw.de

#whoami
¬ Security Researcher @ ERNW

Research
¬ Application and Virtualization

Security
¬ Recent Research

¬ Security Appliances (Fireeye, Palo Alto)
¬ Hypervisors (Xen)

¬ @_fel1x on Twitter

#216.03.16

www.ernw.de

Agenda

¬ Device Virtualization & Paravirtualized Devices
¬ Double Fetch Vulnerabilities
¬ Xenpwn: Architecture and Design
¬ Results
¬ Case Study: Exploiting xen-pciback

4/14/16 #3

www.ernw.de

Device Virtualization
¬ Virtualized systems need access to

virtual devices
− Disk, Network, Serial, ...

¬ Traditionally: Device emulation
− Emulate old and well supported

hardware devices
− Guest OS does not need special drivers
− Installation with standard installation

sources supported

4/14/16 #4

www.ernw.de

Paravirtualized Devices

¬ Most important downsides of emulated devices:
− Hard to implement securely and correctly
− Slow performance
− No support for advanced features

¬ Solution: Paravirtualized Devices
− Specialized device drivers for use in virtualized systems
− Idea: Emulated devices are only used as fallback mechanism
− Used by all major hypervisors

4/14/16 #5

www.ernw.de

Paravirtualized Devices
¬ Split Driver Model

− Frontend runs in Guest system
− Backend in Host/Management domain

¬ Terminology differs between
hypervisors
− VSC / VSP in Hyper-V
− Virtio devices and drivers

¬ Implementations are quite similar

4/14/16 #6

www.ernw.de

Paravirtualized Devices ¬ PV devices are implemented on top of
shared memory
− Great Performance
− Easy to implement
− Zero copy algorithms possible

¬ Message protocols implemented on
top
− Xen, Hyper-V and KVM all use ring

buffers
¬ Shared memory mappings can be

constant or created on demand

4/14/16 #7

www.ernw.de

Security of PV Devices
¬ Backend runs in privileged context è Communication between

frontend and backend is trust boundary
¬ Low level code + Protocol parsing è Bugs
¬ Examples

− Heap based buffer overflow in KVM disk backend (CVE-2011-1750)
− Unspecified BO in Hyper-V storage backend (CVE-2015- 2361)

¬ Not as scrutinized as emulated devices
− Device and hypervisor specific protocols
− Harder to fuzz

4/14/16 #8

www.ernw.de

Very interesting target
¬ Device emulation often done in user space ßà PV backend

often in kernel for higher performance
− Compromise of kernel backend is instant win J

¬ PV devices are becoming more important
− More device types (USB, PCI pass-through, touch screens, 3D

acceleration)
− More features, optimizations

¬ Future development: Removal of emulated devices
− see Hyper-V Gen2 VMs

4/14/16 #9

www.ernw.de

Research goal

¬ ”Efficient vulnerability discovery in Paravirtualized
Devices”

¬ Core Idea: No published research on the use of shared
memory in the context of PV devices

¬ Bug class that only affect shared memory? è Double
fetches!

4/14/16 #10

www.ernw.de

Double Fetch vulnerabilities

¬ Special type of TOCTTOU bug affecting shared memory.
¬ Simple definition: Same memory address is accessed

multiple times with validation of the accessed data
missing on at least one access

¬ Can introduce all kinds of vulnerabilities
− Arbitrary Write/Read
− Buffer overflows
− Direct RIP control J

4/14/16 #11

www.ernw.de

Double Fetch
vulnerabilities ¬ Term “double fetch” was coined by Fermin

J. Serna in 2008
− But bug class was well known before that

¬ Some interesting research published in
2007/2008
− Usenix 2007 “Exploiting Concurrency

Vulnerabilities in System Call Wrappers” -
Robert N. M. Watson

− CCC 2007: “From RING 0 to UID 0” and Phrack
#64 file 6 – twiz, sgrakkyu

¬ First example I could find is sendmsg()
linux bug reported in 2005
− Happy to hear about more J

4/14/16 #12

www.ernw.de

Example: sendmsg()

4/14/16 #13

www.ernw.de

Bochspwn
¬ “Identifying and Exploiting

Windows Kernel Race Conditions
via Memory Access Patterns”
(2013)
− by j00ru and Gynvael Coldwind

¬ Uses extended version of Bochs
CPU emulator to trace all memory
access from kernel to user space.

4/14/16 #14

www.ernw.de

Bochspwn

¬ Resulted in significant number of Windows bugs (and a
Pwnie)
− but not much published follow-up research

¬ Whitepaper contains detailed analysis on exploitability of
double fetches
− On multi core system even extremely short races are exploitable

¬ Main inspiration for this research.

4/14/16 #15

www.ernw.de

nt!ApphelpCacheLooku
pEntry

4/14/16 #16

Example: Bochspwn

www.ernw.de

Xenpwn
¬ Adapt memory access tracing approach used by Bochspwn for

analyzing PV device communication.
¬ Why not simply use Bochspwn?

− Extremely slow
− Passive overhead (no targeted tracing)
− Compatibility issues
− Dumping traces to text files does not scale

¬ Idea: Implement memory access tracing on top of hardware
assisted virtualization

4/14/16 #17

www.ernw.de4/14/16 #18

www.ernw.de

Xenpwn Architecture ¬ Nested virtualization
− Target hypervisor (L1) runs on top of

base hypervisor (L0)
¬ Analysis components run in user

space of L1 management domain.
− No modification to hypervisor required
− Bugs in these components do not crash

whole system
¬ L0 hypervisor is Xen

4/14/16 #19

www.ernw.de

LibVMI
¬ Great library for virtual machine

introspection (VMI)
− Hypervisor agnostic (Xen and KVM)
− User-space wrapper around hypervisor

APIs
¬ Allows access to and manipulation of

guest state (memory, CPU registers)
¬ Xen version supports memory events

4/14/16 #20

www.ernw.de

LibVMI Memory Events
¬ Trap on access to a guest physical

address
¬ Implemented on top of Extended

Page Tables (EPT)
− Disallow access to GPA
− Access triggers EPT violation and VM

exit
− VM exit is forwarded to libvmi handler

4/14/16 #21

www.ernw.de

Memory Access Tracing
with libVMI

1. Find shared memory pages
2. Register memory event handlers
3. Analyze memory event, extract

needed information and store in
trace storage.

4. Run analysis algorithms (can
happen much later)

4/14/16 #22

www.ernw.de

Trace Collector

¬ Use libvmi to inspect memory and identify shared memory
pages
− Target specific code.
− Identify data structures used by PV frontend/backend and

addresses of shared pages
¬ Registers memory event handlers
¬ Main work is done in callback handler

− Disassemble instructions using Capstone

4/14/16 #23

www.ernw.de

Callback handler

4/14/16 #24

www.ernw.de

Trace Storage

¬ Storage needs to be fast and persistent
− Minimize tracing overhead
− Allow for offline analysis

¬ Nice to have: Efficient compression
− Allows for very long traces

¬ Tool that fulfills all these requirements: Simutrace
− simutrace.org

4/14/16 #25

www.ernw.de

Simutrace ¬ Open source project by the Operation
System Group at the Karlsruhe Institute of
Technology

¬ Designed for full system memory tracing
− All memory accesses including their content

¬ C++ daemon + client library
− Highly efficient communication over shared

memory pages
¬ Uses specialized compression algorithm

optimized for memory traces
− High compression rate + high speed

¬ Highly recommended!

4/14/16 #26

www.ernw.de

Trace Entries

4/14/16 #27

For every memory access:
For every unique instruction:

www.ernw.de

Double Fetch
Algorithm

Simplified version (Ignores
overlapping accesses and
interweaved read/writes)

4/14/16 #28

www.ernw.de

Advantages & Limitations
¬ Good:

− Low passive overhead
− Largely target independent

− only Trace collector requires adaption
− Easy to extend and develop

¬ Bad
− High active overhead

− VM exits are expensive
− Reliance on nested virtualization

4/14/16 #29

www.ernw.de

Nested Virtualization on Xen
¬ Xen Doku: Nested HVM on Intel CPUs, as of Xen 4.4, is

considered "tech preview". For many common cases, it should
work reliably and with low overhead

¬ Reality:
− Xen on Xen works
− KVM on Xen works (most of the time)
− Hyper-V on Xen does not work L

¬ For this reason, all of the following results are from Xen
− .. but still hopeful for Server 2016 Hyper-V

4/14/16 #30

www.ernw.de

Results

¬ Tracing runs for two L1 targets:

¬ Differences in supported PV devices
− SCSI, USB

4/14/16 #31

www.ernw.de

Results

¬ Main Problem: Getting good coverage
− No automated way to exercise device functionality implemented

¬ In the following: Interesting bugs found with default
compiler settings
− Full thesis contains more statistic about instruction types and

attack surface

4/14/16 #32

www.ernw.de

QEMU xen_disk

Normally not exploitable thanks
to compiler optimizations

4/14/16 #33

www.ernw.de

xen-blkback

OOB Read/Write

4/14/16 #34

www.ernw.de

xen-pciback

4/14/16 #35

www.ernw.de

xen-pciback: xen_pcibk_do_op

4/14/16 #36

www.ernw.de

xen-pciback
¬ switch statement is compiled into

jump table
¬ op->cmd == $r13+0x4
¬ Points into shared memory
¬ Range check and jump use two

different memory accesses
¬ Valid compiler optimization

− op is not marked as volatile

4/14/16 #37

www.ernw.de

Exploiting pciback ¬ Race is very small: 2 Instructions
− But can be reliably won if guest VM has

multiple cores
¬ Lost race does not have any

negative side effects
− Infinite retries possible

¬ Simple to trigger
− Send PCI requests while flipping value

using XOR

4/14/16 #38

www.ernw.de

Exploiting pciback

¬ Indirect jump è No immediate RIP control
− Need to find reliable offset to function pointer

¬ Load address of xen-pciback.ko is random
¬ Virtual address of backend mapping also not known
¬ A lot of similarities to a remote kernel exploit
¬ Chosen approach: Trigger type confusion to get write

primitive

4/14/16 #39

www.ernw.de

Type Confusion ¬ Second jump table generated for
xen-pciback
− Almost directly behind the jump table

generated for vulnerable function
¬ XenbusStateInitialized uses value

of r13 register as first argument
− Should be a pointer to a

xen_pcibk_device structure
− Is a pointer to the start of the shared

memory page J

4/14/16 #40

www.ernw.de

Getting a write primitive
¬ xen_pcibk_attach first tries to lock the

dev_lock mutex of referenced
structure.

¬ Gives us the possibility to call
mutex_lock with a fake mutex
structure

¬ mutex_lock
− Fastpath: Switch lock count from 1 -> 0
− Slowpath: Triggered when lock count != 1

4/14/16 #41

www.ernw.de

Getting a write primitive:
mutex_lock slowpath 1. mutex_optimistic_spin needs to fail.

− Can be achieved by setting lock->owner
to a readable zero page

2. If lock count still not 1, mutex_waiter
structure is created and stored on
stack

3. mutex_waiter structure is added to
lock->wait_list and kernel thread
goes to sleep till wake up.

è Pointer to waiter is written to attacker
controlled location.

4/14/16 #42

www.ernw.de

Write Primitive ¬ write-where but not write-what
− Pointer to pointer to attacker controlled

data
− Can‘t simply overwrite function pointers

¬ One shot
− pciback is locked due to xen_pcibk_do_op

never returning
¬ Idea: Add faked entries to a global

linked list.
− Requires known kernel version + no

KASLR or infoleak

4/14/16 #43

www.ernw.de

Before

4/14/16 #44

list_head.next

list_head.prev

controlled data

fake_prev

entry1.next

entry1.prev

entry2.next

entry2.prev

www.ernw.de

After

4/14/16 #45

list_head.next

list_head.prev

controlled data

fake_prev

waiter

prev

next

www.ernw.de

Overwrite Target ¬ Global data structure
− Need to know address of list_head

¬ No new elements should be
attached during run time
− list_head.prev is not changed, new

entry might be added directly behind
list_head

¬ Needs to survive one “junk“ entry
− No full control over waiter structure /

stack frame

4/14/16 #46

list_head.next

list_head.prev

controlled data

fake_prev

waiter

prev

next

www.ernw.de4/14/16 #47

www.ernw.de

fs/exec.c: formats ¬ formats linked list contains entries for
different file formats supported by
exec
− ELF
− #! shell scripts
− a.out format

¬ Walked every time exec* syscall is
called to load input file.

¬ waiter entry is skipped because
try_module_get function fails

4/14/16 #48

www.ernw.de

Getting Code Execution

¬ Set address of load_binary pointer to stack pivot
¬ ROP chain to allocate executable memory and copy

shellcode
− vmalloc_exec + memcpy

¬ Restore original formats list
¬ $shellcode
¬ Return to user space

4/14/16 #49

www.ernw.de

Demo J

4/14/16 #50

www.ernw.de

Thesis, Whitepaper & Code

¬ Master Thesis describing Xenpwn in greater detail can be
found online:
https://os.itec.kit.edu/downloads/ma_2015_wilhelm_felix
__discover_software_vulnerabilities.pdf

¬ Exploit code + Whitepaper for pciback vulnerability will be
released after Infiltrate

¬ Xenpwn open source release: May 2016

4/14/16 #51

www.ernw.de

Future Work

¬ Use Xenpwn against Hyper-V and VMWare
− Requires improved support for nested virtualization

¬ Identify and analyze other shared memory trust
boundaries
− Sandboxes?

¬ What types of bugs can we find with full memory traces?

4/14/16 #52

www.ernw.de

Thanks for your attention!

Q&A
@_fel1x

fwilhelm@ernw.de
Also visit our blog: https://insinuator.net

#5316.03.16

